Optimizing chemotherapy in childhood acute myeloid leukemia.
Optimizing chemotherapy in childhood acute myeloid leukemia.
Titel: | Optimizing chemotherapy in childhood acute myeloid leukemia. |
Författare | Josefine Palle |
Klinik-inst-enhet: | Institutionen för kvinnor och barns hälsa |
Sjukhus/Universitet: | Uppsala universitet |
e-post: | josefine.palle@akademiska.se |
Disputationsdatum: | 2008-09-26 |
Huvudhandledare: | Gudmar Lönnerholm |
Opponent: | Henrik Schröder |
Sammanfattning/ Abstract
Despite major advances in our understanding of the biology of childhood acute myeloid leukemia (AML) and the development of new cytotoxic drugs, the prognosis of long-term survival is still only 60-65 %.
In the present research, we studied the pharmacokinetics of drugs used in the induction therapy of childhood AML and performed in vitro drug sensitivity testing of leukemic cells from children with AML.
The aims of the studies were to correlate the results of the analysis to biological and clinical parameters and to identify subgroups of AML with specific drug sensitivity profiles in order to better understand why treatment fails in some patients and how therapy may be improved.
Blood samples were analysed to study the pharmacokinetics of doxorubicin (n=41), etoposide (n=45) and 6-thioguanine (n=50). Doxorubicin plasma concentration and total body clearance were correlated to the effect of induction therapy, and doxorubicin plasma concentration was an independent factor for complete remission, both in univariate and multivariate analysis including sex, age, and white blood cell count at diagnosis. For etoposide and 6-thioguanine no correlation was found between pharmacokinetics and clinical effect. Children with Down syndrome (DS) tended to reach higher blood concentrations of etoposide and thioguanine nucleotides, indicating that dose reduction may be reasonable to reach the same drug exposure as in children without DS.
Leukemic cells from 201 children with newly diagnosed AML, 15 of whom had DS, were successfully analysed for in vitro drug sensitivity by the fluorometric microculture cytotoxicity assay (FMCA). We found that samples from children with DS were highly sensitive to most drugs used in AML treatment. In non-DS children, the t(9;11) samples were significantly more sensitive to cytarabine (p=0.03) and doxorubicin (p=0.035) than other samples. The findings might explain the very favorable outcome reported in children with DS and t(9;11)-positive AML. A specific drug resistance profile was found for several other genetic subgroups as well. A detailed study of MLL-rearranged leukemia showed that cellular drug sensitivity is correlated both to partner genes and cell lineage, findings that support the strategy of contemporary protocols to include high-dose cytarabine in the treatment of patients with MLL-rearrangement, both in AML and acute lymphoblastic leukemia (ALL).
Our results indicate that drug resistance and pharmacokinetic studies may yield important information regarding drug response in different sub-groups of childhood AML, helping us to optimize future chemotherapy in childhood AML.
access_time 2014-05-18 12:01:40